

INFLUENCE OF LOCAL CIRCULATION ON SPATIAL AND TEMPORAL DISTRIBUTION OF THE PRECIPITATION NEAR THE NEGRO AND SOLIMOES RIVERS CONFLUENCE REGION

A presentation by


Mercel José

Advisor: Prof. Maria Assunção Faus da Silva Dias Co-Advisor: Prof. Edmilson Dias de Freitas

University of São Paulo - USP Institute of Astronomy, Gephysics and Atmospheric Sciences - IAG

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Amazon F	Region			

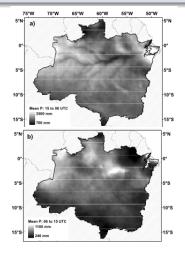
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction ●○	Objective	Data and Methodology	Results 00000	Conclusions
Amazon Region				

The surface heterogeneity induces a thermal contrast between land and the great rivers and consequently development of the local circulations. Objective

Data and Methodology

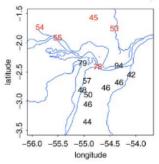
Results


Conclusions

Tendency of precipitation near the rivers margins

Paiva et al. (2011)

During afternoon-night period (15 to 05 UTC): Reduction of rainfall over Amazon rivers;


During night-morning period (06 to 15 UTC): Increase of rainfall over Amazon rivers.

Fitzjarrald et al. (2008)

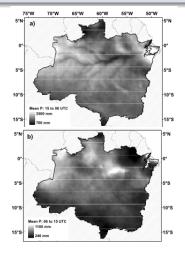
They shown that the rainfall over Amazon River is predominantly nocturnal, specifically near the Santarém station.

Rainfall Fraction 0-12 UT (%)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Objective

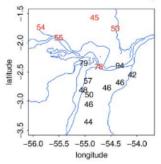
Data and Methodology


Results

Tendency of precipitation near the rivers margins

Paiva et al. (2011)

During afternoon-night period (15 to 05 UTC): Reduction of rainfall over Amazon rivers;

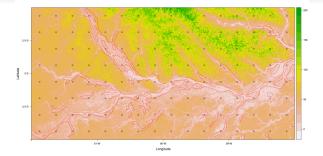

During night-morning period (06 to 15 UTC): Increase of rainfall over Amazon rivers.

Fitzjarrald et al. (2008)

They shown that the rainfall over Amazon River is predominantly nocturnal, specifically near the Santarém station.

Rainfall Fraction 0-12 UT (%)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

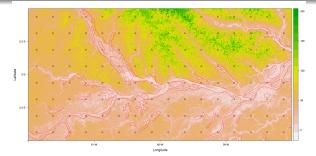

Introduction	Objective	Data and Methodology	Results	Conclusions
Objective				

Analyze the role of the local circulations on the spatial and temporal distribution of precipitation close to the Manaus city region, where confluence of the Negro and Solimões rivers occur.

Introduction	Objective	Data and Methodology	Results 00000	Conclusions
Data				

Satellite Rainfall Estimates From TRMM (Tropical Rainfall Measurement Mission)

Product TRMM_3B42: Rainfall Rate; Data Period: January 1998 to December 2012 (15 years); Data Frequency: 3 hours; Grid Space: 25 X 25 km.

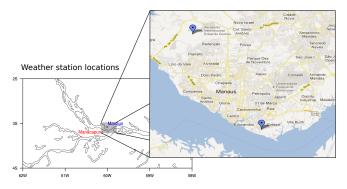

Introd 00	uction	Objective	Data and Methodology	Results 00000	Conclusions
Da	ata				
	Satellite Rainf	all Estimates From	TRMM (Tropical Rainfall N	Aeasurement Mission)	

Product TRMM_3B42: Rainfall Rate;

Data Period: January 1998 to December 2012 (15 years);

Data Frequency: 3 hours;

Grid Space: 25 X 25 km.



Introduction 00	Objective	Data and Methodology	Results	Conclusions
Data				

i) Data Period: Eduardo Gomes 1977 - 2012 (36 years) and Ponta Pelada 1973 - 2012 (40 years);

ii) Hourly data;

iii) Dew point temperature and velocity and wind direction.

Introduction	Objective	Data and Methodology	Results 00000	Conclusions

Methodology

Station data analysis Wind Frequency in function of the wind direction information (Polar Plot);

Vapor Pressure data were used as an atmospheric moisture indicator

Precipitation data analysis Accumulated precipitation composites (P) for 8 times every three-hours in local time;

Gradient of the Accumulated precipitation composites

$$\nabla P = \frac{\partial P}{\partial x}\hat{i} + \frac{\partial P}{\partial y}\hat{j} \tag{1}$$

Dry (June-November) and wet (December-May) Periods;

Introduction	Objective	Data and Methodology	Results 00000	Conclusions

Methodology

Station data analysis Wind Frequency in function of the wind direction information (Polar Plot);

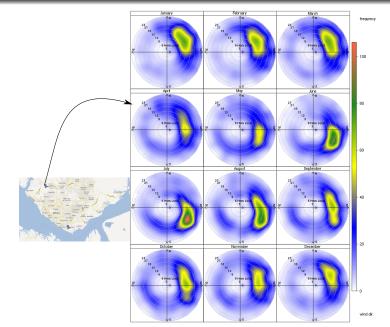
Vapor Pressure data were used as an atmospheric moisture indicator

Precipitation data analysis Accumulated precipitation composites (P) for 8 times every three-hours in local time;

Gradient of the Accumulated precipitation composites

$$\nabla P = \frac{\partial P}{\partial x}\hat{i} + \frac{\partial P}{\partial y}\hat{j} \tag{1}$$

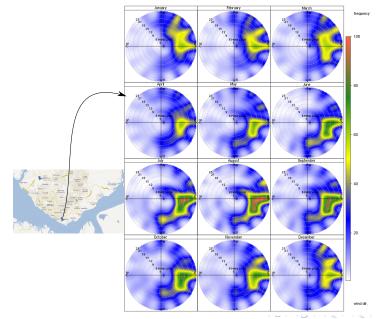
Dry (June-November) and wet (December-May) Periods;

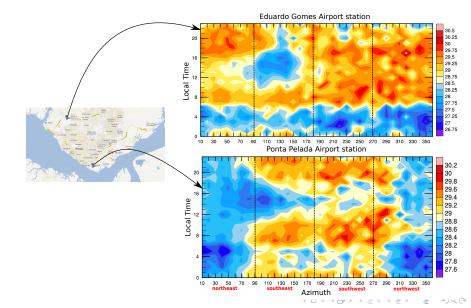

Objective

Data and Methodology

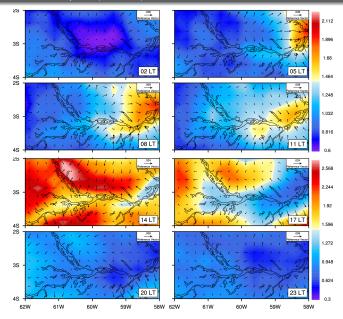
Results ●○○○○

Conclusions

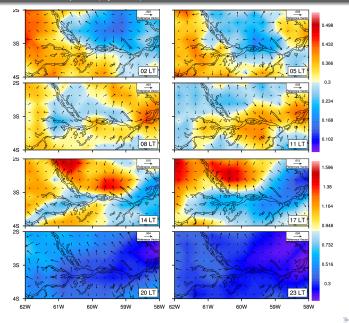

Wind Frequency of Eduardo Gomes Airport station


- 99 P

Wind Frequency of Ponta Pelada Airport station



Introduction	Objective	Data and Methodology	Results ○○●○○	Conclusions
Vapor pressure (hPa)				


Results 00000

Composites and Gradients of Precipitation (wet season)

Results

Composites and Gradients of Precipitation (dry season)

Introduction	Objective	Data and Methodology	Results 00000	Conclusions

Conclusions

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

• At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Conclusio	ons			

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Conclusi	ons			

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Conclusio	ons			

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Conclusio	ons			

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

• At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction 00	Objective	Data and Methodology	Results 00000	Conclusions
Conclusio	ons			

- In both weather stations, when the wind comes from south, are found high values of vapor pressure;
- When wind comes from southeast decreases the values of vapor pressure over the Eduardo Gomes Airport region;
- When wind comes from north decreases the values of vapor pressure over the Ponta Pelada Airport region;
- In afternoon period and early night minimum values of accumulated precipitation are observed over the rivers and maximum values over the land;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 At dawn and early morning, the accumulated maximum values are found over rivers.

Introduction	Objective	Data and Methodology	Results 00000	Conclusions

Thank you!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●